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Dynamics of highly supercooled liquids far from equilibrium

Ryoichi Yamamoto and Akira Onuki
Department of Physics, Kyoto University, Kyoto 606, Japan

Received 2 March 2000

Abstract. We first review our recent simulation work on dynamic heterogeneity and supercooled
liquid rheology. We then treat a supercooled polymer melt to study the stress relaxation function,
transient stress evolution, shear thinning, and elongation of chains.

(Some figures in this article appear in colour in the electronic version; see www.iop.org)

1. Introduction

A number of MD simulations have detected mobile clusters or strings in coexistence with
immobile regions in supercooled model binary mixtures with various visualization methods
[1–6]. This suggests that rearrangements of particle configurations in glassy materials are
cooperative, involving many molecules. On the other hand, some experiments have shown
that the diffusion constant D of a tagged particle in a supercooled liquid is considerably
larger than that predicted by the Einstein–Stokes relation [7, 8]. The same tendency has been
confirmed by MD simulations [9–11]. Its origin is now ascribed to coexistence of relatively
active and inactive regions among which the diffusion constant varies significantly. To study
these aspects numerically, we introduced bond breakage among adjacent particle pairs and
obtained the correlation length ξ which grows up to the system size as T is lowered [4,5]. We
then studied heterogeneity in the particle diffusivity [11], which is essentially the same as that
in the bond breakage.

As another direction in this field, we stress the importance of nonlinear, nonequilibrium
processes such as aging effects and nonlinear rheology in supercooled liquids. We studied the
latter problem and found that the externally applied shear with rate γ̇ induces jump motions or
bond breakage when γ̇ exceeds the inverse α-relaxation time [5,12]. Thus a strongly nonlinear
regime is encountered even for extremely small γ̇ . Remarkably, ξ decreases with increasing γ̇ ,
so γ̇ plays a role similar to that of a magnetic field in Ising systems near the critical point. This
paper summarizes these results and presents preliminary results on the rheology of short-chain
systems in supercooled states.

2. Dynamic heterogeneity in a binary mixture

Our 3D binary mixture is composed of two atomic species, 1 and 2, with N1 = N2 = 5000
particles in a cubic box with dimension L = V 1/3 = 23.2 under periodic boundary conditions.
They interact via the soft-core potentials vab(r) = ε(σab/r)

12 with σab = (σa + σb)/2
(a, b = 1, 2), and the mass ratio is m2/m1 = 2. The size ratio is taken at σ2/σ1 = 1.2
to prevent crystallization [2]. The particle density is fixed at (N1 + N2)/V = 0.8/σ 3

1 . We
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will measure space and time in units of σ1 and τ0 = (m1σ
2
1 /ε)

1/2. The temperature T will
be measured in units of ε/kB , and the viscosity η in units of ετ0/σ

3
1 . We take long annealing

times at low T to suppress aging effects. We apply shear as follows: after a long equilibration
time in a quiescent state (t < 0), the average velocity γ̇ y is added to the velocities of all the
particles in the x-direction at t = 0. Then the shear flow is maintained by using the Lee–
Edwards boundary condition [13]. In our case shear flow serves to destroy glassy structures
and produces no long-range structure.

2.1. Bond breakage and structural relaxation

Owing to the sharpness of the first peak of the pair correlation functions gab(r), we can
unambiguously define bonds between particle pairs at distances close to the first peak position
[4, 5]. That is, the particle pair i and j is bonded if rij (t0) = |ri (t0) − rj (t0)| �  1ab where
i ∈ a and j ∈ b. After a lapse of time !t , the bond is broken if rij (t0 + !t) >  2ab. Here
 1ab is longer than the distance of the first peak position of gab(r), and  2ab (� 1ab) is shorter
than that of the second peak position. The number of the unbroken bonds may be fitted to
exp[−(!t/τb)

c] as a function of the time interval !t with c � 1 (c � 0.6 at T = 0.234). Thus
we determine the bond breakage time τb both in quiescent and sheared conditions. It may be
fitted to a simple formula:

1/τb(γ̇ )
∼= 1/τb(0) + Abγ̇ (1)

where Ab is a constant of order 1 in our supercooled states. For the strong-shear condition
γ̇ τb(0) > 1, we have τb(γ̇ ) ∼ γ̇−1. This means that jump motions are induced by applied
shear on the timescale of γ̇−1. At zero shear the bond breakage occurs by thermal activation
and τb(0) ∼ 10τα , where τα is obtained from the decay of the self-part of the time correlation
function as Fs(q, τα) = e−1 at q = 2π . We define the structure factor of the broken bonds as

Sb(q) =
〈∣∣∣∣ ∑

broken bonds

exp(iq · Rij )

∣∣∣∣
2〉

(2)

where Rij = 1
2 (ri (t0) + rj (t0)). The summation is over the broken pairs in a time interval

[t0, t0 + !t]. Then, Sb(q) can be fitted to the Ornstein–Zernike form:

Sb(q) = Sb(0)/(1 + ξ 2q2)

as shown in figure 1, where !t = 0.05τb(0). The correlation length ξ is determined from
this expression. The clusters of the broken bonds are analogous to the critical fluctuations in
Ising systems. As in critical dynamics, we have furthermore confirmed a dynamical scaling
relation:

τb ∼ ξz (3)

where z = 4 in 2D and z = 2 in 3D. This relation holds even for strong shear γ̇ τb(0) � 1,
where ξ ∼ γ̇−1/z. The shear with rate γ̇ thus suppresses the heterogeneity, which is analogous
to the effect of a magnetic field h on the critical fluctuations in Ising systems.

2.2. Heterogeneity in diffusion

As shown in figure 2, our simulation results for the diffusion constant of a tagged particle of
the species 1 can be fitted to D ∝ η−0.75 at low T . On the other hand, τα is proportional to the
viscosity η as τα ∼ η/T . In the following we visualize the heterogeneity of the diffusivity.
We pick up mobile particles of each species a (1 or 2) with the amplitude of the displacement
vector !rj (t) exceeding a lower limit  c(t) in a time interval [t0, t0 + t]. Here  c(t) is defined
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Figure 1. Sb(q)/Sb(0) on logarithmic scales for various T and γ̇ in 3D. Open and closed symbols
represent results for γ̇ = 0 and γ̇ 	= 0, respectively. The solid line is the OZ form 1/(1 + x2) with
x = qξ .
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Figure 2. Dτα versus τα . The solid line represents the Stokes–Einstein value DESτα = (2π)−2.
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Figure 3. Mobile particles in a time interval t = 0.125τα atT = 0.267. The darkness of the spheres
and cones represents the depth in the 3D space. (a) Those of the smaller species 1 represented by
spheres with radii aj (t) in (4). (b) Those of the species 1 and 2 represented by cones. (c) Those
belonging to the clusters with sizes n � 5 in (b).

such that the sum of !rj (t)
2 for the mobile particles is 66% of the total sum (∼=6DatNa for

t � 0.1τα with a = 1, 2). In figure 3(a) the mobile particles of the smaller species 1 in a time
interval of [t0, t0 + 0.125τα] are depicted as spheres with radius

aj (t) = |!rj (t)|
/√〈∑

 ∈1

(!r (t))2

〉/
N1 (4)
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Figure 3. (Continued)

located at Rj (t) = 1
2 [rj (t0)+rj (t0 + t)]. The chosen particles number 571. The heterogeneity

is most marked for this time interval in which the non-Gaussian parameter is maximum.
In figure 3(b), the displacement vectors of the mobile particles of both the species 1 and
2 are represented by cones with the base centre and the tip being the initial and final
positions, respectively. We then group the mobile particles into clusters with particle number
n = 1, 2, . . ., where the mobile particles i ∈ a, j ∈ b belong to the same cluster if either
of |ri (t0) − rj (t0 + t)| or |ri (t0 + t) − rj (t0)| is shorter than 0.3(σa + σb). In figure 3(c) we
pick up those belonging to the clusters with n � 5. They make up 5% of the total number
of particles N , but they contribute 40% to the sum 〈∑ (!r (t))

2〉 for all the particles. The
mobile particles thus form chains as reported in reference [6]. Moreover, we should note that
these chains aggregate to form large-scale heterogeneities on the scale of ξ .

To examine the time evolution of the heterogeneity structure we introduce the diffusivity
density

∑
j aj (t)

2δ(r − Rj (t)) of the species 1 or its Fourier component:

Dq(t0, t) =
∑
j∈1

aj (t)
2 exp[−iq · Rj (t)]. (5)

Here the immobile particles are nearly negligible in the summation due to the weight aj (t)2.
In the particle displacements, t0 is the initial time and t0 + t is the final time, so t is the time
interval. The structure factor SD(q, t) = 〈|Dq(t0, t)|2〉 behaves very similarly to the broken-
bond structure factor (2) with the same correlation length ξ . By displacing the initial time t0
to t0 + τ with the time interval t fixed, we may introduce the time correlation function:

SD(q, t, τ ) = 〈Dq(t0 + τ, t)D−q(t0, t)〉 (6)

which is obtained after averaging over many initial states. Then SD(q, t, 0) = SD(q, t). In
figure 4 we show the relaxation of SD(q, τα, τ )/SD(q, τα, 0) as a function of τ for three q.
It may be fitted to exp[−(τ/τh(q))

c] with c = 0.5. The relaxation time τh(q) is about 3τα
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Figure 4. SD(q, τα, τ )/SD(q, τα, 0) versus (τ/τα)1/2 for q = 0.35, 0.5, and 0.66. This represents
the decay of the heterogeneity structure.

at T = 0.267 and q = 0.35 (which is the smallest wavenumber, 2π/L). It decreases with
decreasing q and saturates for q � ξ−1. The two-time correlation function for the broken-bond
density also relaxes with τh(q) in the same manner.

3. Rheology in a supercooled binary mixture

In our fluid mixtures in supercooled states, non-Newtonian behaviour appears for γ̇ larger
than τb(0)−1 ∼ 0.1τ−1

α . We demonstrated that the steady-state viscosity η(γ̇ ) = σxy/γ̇ is
determined by the bond breakage time in (1) as

η(γ̇ ) ∼= Aητb(γ̇ ) + ηB (7)

where Aη and ηB are constants of order 1 for our supercooled states. This form agrees with an
experiment by Simmons et al [14]. In particular, η(γ̇ ) ∼= (Aη/Ab)/γ̇ + ηB , for γ̇ τb(0) � 1,
using (1). If the backgroundηB is negligible, a constant limiting stress follows asσxy = Aη/Ab.
The physical mechanism of this behaviour is as follows [5]. Upon each bond breakage induced
by shear, the particles involved release a potential energy of order ε. It is then changed into
energies of random motions supported by the surrounding particles. The heat production rate
is estimated as Q ∼ nε/τb(γ̇ ) ∼ nεγ̇ , where n is the number density. Because Q is related to
the viscosity by Q = σxyγ̇ , we obtain σxy ∼ nε for high shear. Interestingly, similar jamming
dynamics has begun to be recognized also in the rheology of foams [15–17] and granular
materials [18] composed of large elements. Shear-thinning behaviour and heterogeneities in
configuration rearrangements are commonly observed also in these macroscopic systems.
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4. Rheology in a supercooled polymer melt

Recent simulations on glassy polymer melts have mainly treated self-motions of particles in
quiescent states [19–21]. We will study the rheological properties of glassy polymers, for
which not enough theoretical effort has been made. In our model all the bead particles interact
with a Lennard-Jones potential of the form [19, 21]

ULJ (r) = 4ε[(σ/r)12 − (σ/r)6] + ε.

It is cut off at the minimum distance 21/6σ , so we use its repulsive part only to prevent spatial
overlap of particles. Consecutive beads on each chain are connected by an anharmonic spring
of the form

UF (r) = −1

2
kcR

2
0 ln[1 − (r/R0)

2]

with kc = 30ε/σ 2 and R0 = 1.5σ . In a cubic box with length L = 10σ under periodic
boundary conditions, we put M = 100 chains composed of N = 10 beads. The number
density is fixed at n = NM/V = 1/σ 3. The bond lengths bj = |Rj − Rj+1| between
consecutive beads on each chain are nearly fixed at the minimum b0

∼= 0.96 of ULJ (r)+UF (r).
We will measure space, time, and T in units of σ , τ0 = (mσ 2/ε)1/2, and ε/kB where m is the
bead mass.

As in references [19–21], we confirmed that the relaxation time of the pth mode of a chain
is well described by the Rouse result:

τp = ζb2/[12T sin2(pπ/2N)] (1 � p � N − 1)

in quiescent supercooled states. Here the end-to-end vector of a chain P = RN − R1 has the
variance 〈P 2〉 = (N − 1)b2, and obeys a Rouse relaxation, yielding the statistical segment
length b (∼=1.2) and the friction constant ζ . The Rouse time τR (=τ1) then increases drastically
with lowering T as τR = 250, 1800, and 6 × 104 for T = 1.0, 0.4, 0.2, respectively. We
also calculated the α-relaxation time τα using the self-correlation function as Fq(τα) = e−1 at
q = 2π [31]. Then we obtained τR

∼= 2N2τα for our system.

4.1. Stress relaxation in the linear regime

Now let us discuss the linear viscoelastic behaviour in supercooled states [22]. In figure 5 we
show the stress relaxation function

G(t) = 〈σT
xy(t)σ

T
xy(0)〉/V T (8)

where σT
xy is the space integral of the xy-component of the total stress tensor over the volume

V = L3. At the lowest temperature T = 0.2, G(t) exhibits salient features of glassy polymer
melts [22]. From the initial value of order 100, G(t) relaxes to a value G0 of about 5 for t � 1.
We then have a slow decay of the KWW form:

G(t) ∼= G0 exp[−(t/τs)
β] (9)

in the region 1 � t � 10τs , where τs = 90 ∼ τα and β = 0.5. This glassy behaviour
arises from monomeric structural relaxation [22]. For t � 50τs it approaches the Rouse stress
relaxation function:

GR(t) = nTN−1
∑

1�p�N−1

exp(−2t/τp) (10)

which decays as nTN−1 exp(−2t/τR) for t � τR . This final-stage behaviour arises from
relaxation of large-scale chain conformations. Experimentally, however, the intermediate
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Figure 5. The stress relaxation function G(t) (thin solid lines) at T = 0.2 in a supercooled state
and T = 1 in a normal-liquid state. It may be fitted to the stretched-exponential form (dotted line)
at relatively short times and tends to the Rouse relaxation function GR(t) (bold dashed lines) at
long times.

region, which connects the glassy and polymeric (Rouse or reptation) relaxations, extends
over a much wider time range (typically four decades [22]), and G(t) there has been fitted to
an algebraic form, G(t) ∼= e−1G0(t/τs)

−a with a ∼ 0.5 [22]. In addition, on increasing the
molecular weight, a rubbery plateau has been observed to develop after the crossover before
the terminal decay, whereas it is apparently not seen for our short-chain system. The zero-
frequency linear viscosity η consists of a monomeric part !η of order 10τs from the integration
in the time region t � 10τs and the Rouse viscosity

ηR =
∫ ∞

0
dt GR(t)

∼= 0.808TN−1τR

from t � τR . The ratio !η/ηR is thus of order 1/T N (∼1 for T = 0.2 and N = 10), whereas
we should have !η � ηR for much larger N .

In the Rouse model, the total polymer (entropic) stress σR
αβ is the sum of T bjαbjβ/b

2

over all of the bonds in the system, where the bjα are the components of the bond vectors
bj = Rj+1 − Rj . We confirmed that the relaxation function Gc(t) = 〈σR

xy(t)σ
R
xy(0)〉/V T

nearly coincides with GR(t)
∼= G(t) for t � 0.1τR , whereas it is about half of GR(t) for

t � τs . The bond orientation tensor Qαβ may be defined as

Qαβ =
∑

1�j�N−1

〈bjαbjβ〉/b2(N − 1) (∝〈σR
αβ〉).

If the polarizability tensor of a bead is uniaxial along the bond vector, the deviation of the
dielectric tensor !εαβ is proportional to Qαβ − δαβ/3. For flow birefringence we have
!εxy = C〈σR

xy〉/V , where C is a constant. In supercooled states, 〈σR
xy〉/V can be much

smaller than the total shear stress σxy—for instance, in transient states or for oscillatory shear.
The usual stress–optical law !εxy = Cσxy valid far above Tg breaks down close to Tg [23–26].
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4.2. Nonlinear shear effects

In figure 6 we show the stress growth function σxy(t)/γ̇ after application of shear at t = 0 at
T = 0.2 for various γ̇ . In the initial stage, in which γ̇ t � 0.1, we can see the linear viscoelastic
growth, σxy(t)/γ̇ = ∫ t

0 G(t ′) dt ′, whereas a nonlinear regime sets in for γ̇ t � 0.1, resulting
in the non-Newtonian viscosity η(γ̇ ). As a guide, we also plot the linear growth function∫ t

0 GR(t
′) dt ′ from the Rouse model, which is far below the true linear growth for t � τR . The

relevant physical processes are as follows: for γ̇ t � 0.1 the overall chain conformations are
affinely deformed, whereas for γ̇ t � 0.1 the structural rearrangements among beads belonging
to different chains become appreciably induced by shear. Experimentally, however, a stress
overshoot has been observed at γ̇ t = 0.05–0.1 for higher-molecular-weight melts close to
Tg [22]. In figure 7 we display the steady-state viscosity η(γ̇ ). It exhibits marked shear-
thinning behaviour for γ̇ τR � 1 and becomes independent of T for very high shear rates. The
horizontal arrows indicate the linear Rouse viscosity ηR , and the vertical arrows indicate the
points at which γ̇ = τ−1

R . In particular, the curve for T = 0.2 may be fitted to η ∝ γ̇−ν

with ν � 0.7 for γ̇ τR � 1. Similar shear thinning has been reported in MD simulations of
short-chain systems in normal-liquid states, but at much higher shear rates [25, 27, 28].

10–7 10–6 10–5 10–4 10–3 10–2 10–1 100 10110–2

10–1

100

101

102

103

104

t / τR

σ x
y(

 t 
) 

/ γ
.

γ = 10
–1

10
–2

10
–3

10
–4

Rouse

.

linear
growth

linear

Figure 6. Shear stress divided by shear rate γ̇ = 10−1, 10−2, 10−3, 10−4 (thin solid lines) versus
t/τR (where τR = 6 × 104) at T = 0.2. The curves follow the linear growth function (bold solid
line) for γ̇ t � 0.1, but afterwards depart from it. The linear growth function in the Rouse model
is also plotted (bold dashed line).

We next examine the anisotropy in the chain conformations under shear at T = 0.2 and
γ̇ = 10−4. In figure 8(a), we plot the x–y cross section (z = 0) of the steady-state bead
distribution function:

gs(r) =
∑

1�j�N

〈δ(Rj − RG − r)〉/N (11)

where RG(t) = N−1 ∑N
n=1 Rn(t) is the centre of mass of a chain. In figure 8(b), we plot the
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γ  −0.7.

1.0

γ = τR
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Figure 7. The steady-state viscosity versus γ̇ for T = 0.2, 0.4, 1. A line of slope −0.7 is also
given as a guide to the eye.

Figure 8. (a) Isointensity curves of gs(r) in equation (9) in the xy-plane (−3.75 < x, y < 3.75,
z = 0). (b) Those of the incoherent structure factor S(q) in equation (10) in the qxqy -plane
(−π < qx, qy < π, qz = 0). The values for the isolines are 0.01 + 0.02n in (a) and 0.1 + 0.2n in
(b) with n = 0, 1, . . . , 4 from outer to inner line. Here T = 0.2, γ̇ = 10−4, and the flow is in the
horizontal (x-) direction. θ is the angle between the average chain shapes and the y-axis.

structure factor:

S(q) =
∑

1�i,j�N

〈exp(iq · (Ri − Rj )〉/N2 (12)

in the qxqy-plane (qz = 0). It is proportional to the intensity of the scattering from labelled
chains under shear [29]. We recognize that gs(r) and S(q) almost saturate into the forms
shown in figure 8 for γ̇ � 10/τR . The figures indicate that our short chains take ellipsoidal
shapes on average once γ̇ � 10/τR . Let us define the tensor

Iαβ =
∑

1�i,j�N

〈(Ri − Rj )α(Ri − Rj )β〉/N2.
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For small q with qz = 0, we have the expansion

S(q) = 1 − 1

2
a2

1(q · e1)
2 − 1

2
a2

2(q · e2)
2 + · · ·

where {e1, e2} and {a2
1, a

2
2} are the unit eigenvectors and values of the tensor Iαβ with

α, β = x, y. The two lengths a1 and a2 are the shorter and longer radii of the ellipses. In
figure 9 we show tan θ = −e1y/e1x , the degree of elongation 1−a1/a2, and the xy-component
of the orientation tensor Qxy . For γ̇ τR � 10 we have θ ∼= 80◦, a1/a2

∼= 0.3, Qxy
∼= 0.1.

These quantities represent the average chain forms and bond orientation, and are insensitive to
T if plotted versus γ̇ τR . We stress that the shape changes of chains start to occur at γ̇ ∼ τ−1

R

while the monomeric structural relaxation is only slightly affected by shear. In fact, we found
that the cage breakage time τb(γ̇ ) for neighbouring beads belonging to different chains and the
shear-dependent α-relaxation time τα(γ̇ ) do not change appreciably for γ̇ ∼ τ−1

R at T = 0.2.
This tendency should be more evident for longer-chain systems.

10–3 10–2 10–1 100 101 102 103 10410–4

10–3

10–2

10–1

100

101

102

γ τR
.

1–a1/a2

Qxy

tanθ

T = 0.2
0.4
1.0

Figure 9. tan θ , 1 − a1/a2, and Qxy

versus γ̇ τR .

5. Concluding remarks

We have presented some examples of far-from-equilibrium problems for glassy materials. In
particular, a marked analogy with critical phenomena has been pointed out for a binary fluid
mixture. However, the true meaning of the correlation length ξ of the heterogeneity remains
not clear. We need to understand how the dynamical quantities depend on ξ , as in the case of
critical dynamics. We should also fully investigate the space-time evolution of the dynamic
heterogeneity, which should influence transient relaxations, for instance, after a temperature
change or application of strain. In polymer melts also, dynamic heterogeneities are enhanced
at low T by the bond breakage and the monomer diffusivity [30,31]. However, they affect the
centre-of-mass motions of chains little, because their characteristic lifetime is much shorter
than τR (∼N2τα) for N � 1.
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